• 姓名: 陈伟民
  • 性别: 女
  • 职称: 研究员 博导
  • 学历: 博士
  • 电话: 86-10-82543891
  • 传真: 
  • 电子邮件: wmchen@imech.ac.cn
  • 通讯地址 北京市海淀区北四环西路15号

    简历:

  • 教育经历
            北京航空航天大学,博士, 飞行器设计与气动弹性

            中国航空研究院,工学硕士, 飞行器设计与气动弹性

            北京航空航天大学,学士, 飞行器设计

    工作经历

            中国科学院力学研究所,流固耦合系统力学重点实验室,先后任助理研究员、副研究员、研究员和博导

            美国University of Texas at Austin,高级访问学者

            北京大学,力学与工程科学系,博士后-大型空间柔性结构的智能材料结构振动主动控制

        成都飞机设计研究所,工程师-先进飞机气动弹性和结构强度分析

    研究领域:

  •    结构振动与波传播,流固耦合力学,动力学与控制,复合材料力学

    应用领域:
       海洋工程中水下结构(油气输送管线)的流固耦合问题和响应主动控制
       大型海上浮式风机系统的整体响应和柔性叶片气动弹性与颤振
       航空/航天等工程结构的静/动力分析,复杂系统有限元建模与数值计算
       地震波传播及其时域-频域谱分析、震源机制反演

    招生信息:
       招生专业-工程力学,方向包括结构力学、流固耦合力学、振动与波、复合材料力学等
       欢迎海洋工程、航空-航天工程、土木工程以及矿业工程等专业背景的考生报考

    社会任职:

  •  

    获奖及荣誉:

  •  

    代表论著:

  • [1]Dynamic interaction between flexible bodies of large-sized wind turbine. Renewable Energy. 163(2021): 123-137.

    [2]Dynamic characteristics and stability of flexible riser under consideration of non-uniform tension and internal flow. Ocean Engineering, 223(2021): 108631(1-10). 

    [3]LQR Control on Multimode Vortex-Induced Vibration of Flexible Riser Undergoing Shear Flow. Marine Structures, 79(2021), 103047(1-21).

    [4]Moment-tensor inversion and decomposition for cracks in thin plates. Chinese Journal of Aeronautics. 2021, 34(4):352-359. 

    [5]Structural configuration and dynamic performances of flexible riser with distributed buoyancy modules based on FEM simulations. International Journal of Naval Architecture and Ocean Engineering. 2021, 13: 650-658

    [6]Structural responses of large-sized floating wind turbine with consideration of mooring-lines dynamics based on coupled FEM simulations. Ships and Offshore Structures. 2021, 1918942(1-16).

    [7]Study on Suppressing the vortex-induced vibration of flexible riser in frequency domain. Applied Ocean Researches, 116(2021), 102882(1-12). 

    [8]Distortion model design of flexible marine riser. J. Marine Science & Techno. 27(2022), 92-103.

    [9]A moment tensor inversion approach based on the correlation between defined functions and waveforms. Physics of the Earth and Planetary Interiors, 312(2021), 106674 

    [10]Impacts of Mooring-lines Hysterisis on dynamic response of floating wind turbine to random wind loads. Energies, 2021,14,2109

    [11]Analysis on Restoring Stiffness and Its Hysteresis Behavior of Slender Catenary Mooring-Line. Ocean Engineering. 209(2020): 107521(1-12)

    [12]Accuracy of the moment-tensor inversion of far-field P waves, Geophysical Journal International, 2020, 220(1): 248-256

    [13]Active control of flexible riser vibration by boundary control based on LQR controller. Proc. ASME OMAE2019 5A: Pipelines, Risers, and Subsea Systems, V05AT04A049.

    [14]Analysis on multi-frequency vortex-induced vibration and mode competition of flexible ocean riser in sheared fluid field. Petroleum Science and Engineering, 2018,163: 378-386.

    [15]Dynamic response analysis on flexible riser with different configurations in deep-water based on FEM simulations. Proc. ASME OMAE2010; Vol. 5: Pipelines, Risers, and Subsea Systems, V005T04A016

    [16]Mechanical Deterioration of Rock Salt at Different Confinement Levels: a Grain-based Lattice Scheme Assessment. Comp. Geote. 2017(84): 210-224. 

    [17]Study on Multi-mode VIV of Deepwater Riser in Different Flow Fields by Finite Element Simulations. J. Offshore Mechanics and Arctic Engineering. 2016, 138(1):1-8.

    [18]Non-linearly restoring performance of SFT’s catenary mooring-lines under consideration of its dynamic behaviors. Procedia Engineering 166(2016): 202-211.

    [19]Impacts of top-end vessel sway on vortex-induced vibration of the submarine riser for a floating platform in deep water, Ocean Engineering, 2015, 99:1-8.

    [20]Dynamic Characteristics and VIV of Deepwater Riser with Axially Varying Structural Properties, Ocean Engineering, 42(2012): 7-12.

    [21]   Dynamic analysis of coupling between floating top-end heave and riser’s vortex-induced vibration by using finite element simulations, Applied Ocean Research, 2014, 48(1-9).

    [22]Elastic-Plastic Deformation Regimes, the One Parameter Regime and the Two Parameter Regime, of Spherical Contact by Finite Element Simulations, Vacuum, 2011, 85(9):898-903.

    [23]Controlling parameter for wave types of long flexible riser undergoing vortex-induced vibration, Procedia Engineering. 2010, 4: 161-170.

    [24]Indentation of Power Law Creep Solids by Self-Similar Indenters, Materials Science and Engineering: A, 2010, 527: 5613-5618.

    [25]Hydroelastic dynamic characteristics of slender axis-symmetric body, Science in China Series G-Mechanical Sciences, 2010, 53(7): 1339-1347.

    [26]Influence of Contact Geometry on Hardness Behavior in Nano-indentation, Vacuum, 2010, 84(2): 315-320.

    [27]Factors Resulting in Micron Indentation Hardness Descending in Indentation Tests, Chinese Journal of Aeronautics, 2009, 22(1):43-48.

    [28]A load simulation method of piezoelectric actuator in FEM for smart structures, Science in China Series E-Tech. Sci., 2009, 52:2576-2584.

    [29]Study on the Variation of Added Mass and Its Application to the Calculation of Amplitude Response for a Circular Cylinder at Lock-in, China Ocean Engineering, 2007, 21(3):429-437. 

    [30]Influence of indenter tip roundness on hardness behavior in nano-indentation, Materials Science and Engineering A, 2007, 445-446: 323-327.

    [31]Reduction Approaches for Vibration Control of Repetitive Structures, Applied Math. & Mech., 2006, 27(5): 637-644.

    [32]Static shape control of repetitive structures integrated with piezoelectric actuators, Smart Materials and Structures, 2005, 14(6): 1410-1420.

    [33]A Numerical Study of the Indentation Using Indenters of Different Geometry. J. of Materials Research, 2004, 19(1): 73-78.

    [34]Distribution of measuring points and piezoelectric Actuators in flutter suppression, Chinese Journal of Aeronautics, 2002, 15(1): 33-37.

    [35]Flutter Suppression Using Distributed Piezoelectric Actuators, Chinese Journal of Aeronautics, 2000, 13(4): 211-215.

    [36]海洋柔性结构涡激振动的流固耦合机理和响应, 力学进展, 2017, 47(201702): 25-91.

    [37]页岩气开采中的若干力学前沿问题, 力学进展,2019 (201903): 61-295.

    [38]基于FEM 研究含孔隙介质中裂纹矩张量反演精度.北航学报, 2019, 45 (6 ): 1114-21

    [39]锚链动态效应对海上浮式风机整体系统动响应的影响. 中国科学, 2016, Vol.46(12): 124711.

    [40]考虑塔架和叶片动力耦合的随机风载下风机结构动响应, 可再生能源, 2015, 33(5):649-655.

    [41]内波波致剪切流作用下深海立管涡激振动,工程力学, 2011, 28(12): 250-56

    [42]压电纤维复合材料铺层用于翼面设计驱动特性与刚度影响,航空学报. 2010, 31(2): 418-425.

    [43]细长轴对称体的水弹性振动特性分析,中国科学G, 2010, 40(9): 1165-73.

    [44]压电驱动的载荷比拟方法, 中国科学E, 2009, 39(11): 1810-1817.

    [45]压电驱动器的气动弹性应用, 航空学报, 2009, 30(12): 1-10.

    [46]重复结构振动控制降维方法, 应用数学和力学, 27(5): 637-644.

    [47]固体火箭发动机柔性接头的结构分析, 推进技术, 2006, 27(5): 450-454.

    [48]压痕投影接触面积标定方法的研究,力学学报. 2005, 37: 645-653.

    [49]压电驱动器用于薄板型结构振动主动控制研究, 航空学报, 2001, 22(2): 109-112.


    承担科研项目情况:

  • 先后主持和参加中国科学院战略先导专项A类、B类,国家自然科学基金面上项目、重点项目,国家863重大专项以及中科院知识创新工程重点项目等科研工程项目。